
Math 10/11 Honors Section 4.3 Solving Angles in All Four Quadrants

- 1. If $\sin \theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 2. If $\cos\theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 3. If $\tan \theta$ is equal to a negative ratio, then which quadrants will the angle be? What if the ratio is positive, which quadrant is it in?
- 4. If θ is in quadrant 3, then which trig ratio will be negative? $\sin \theta$, $\cos \theta$, or $\tan \theta$?
- 5. If θ is in quadrant 4, then which trig ratio will be negative? $\sin \theta$, $\cos \theta$, or $\tan \theta$?
- 6. Solve for θ , with $0 \le \theta \le 360^\circ$. [REMEMBER: There are TWO answers!]

a) $\sin \theta = 0.8$	b) $\cos \theta = 0.85$	c) $\tan \theta = 0.3$
) : a 00	0.125) 4 0 0 25
a) $\sin \theta = -0.9$	b) $\cos \theta = 0.125$	c) $\tan \theta = 0.25$

$g) 3\sin\theta + 5 = 0$	$h) \tan^2 \theta - 5 = 0$	$i) 4\cos^2\theta - 8 = 1$
$j) (\cos \theta + 1)(3\sin \theta - 2) = 0$	k) $3\sin\theta = 4\cos\theta$	L) $\sin \theta = \cos \theta$

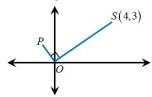
7. A point ``P`` created by the endpoint of a terminal arm is on the circumference of an unit circle of radius 1. Given the angle in standard position, find the coordinates of point `P`.

8. Given each trig ratio, find the specified trig ratio without using a calculator:

a) $\sin \theta = 0.5$	b) $\cos \theta = \frac{-\sqrt{2}}{2}$	c) $\tan \theta = -\sqrt{3}$
$\cos \theta =$ $\tan \theta =$	$\sin \theta =$ $\tan \theta =$	$\cos \theta =$ $\sin \theta =$

d) $\sin \theta = \frac{1}{\sqrt{2}}$	e) $\cos \theta = \frac{-\sqrt{3}}{2}$	f) $\tan \theta = \frac{1}{\sqrt{3}}$
$\cos \theta =$	$\sin \theta =$	$\cos \theta =$
$\tan \theta =$	$\tan \theta =$	$\sin \theta =$
g) $\sin \theta = -1$	h) $\cos \theta = -0.5$	i) $\tan \theta = -1$

9. If the point P(3,-5) is on the terminal arm of an angle in standard position. What is the value of $\sin \theta \times \cos \theta$? Note: This point is not on the circumference of an unit circle.


10. Determine the following using exact value. No calculators:

a) $\cos \frac{5\pi}{4}$	b) $\tan \frac{3\pi}{2}$	c) $\sin \frac{7\pi}{6}$
d) $\tan \frac{-3\pi}{4}$	e) $\cos \frac{11\pi}{6}$	f) $\sin \frac{8\pi}{3}$
g) $\tan 3\pi$	h) $\sin \frac{-5\pi}{3}$	i) $\cos \frac{3\pi}{3}$

11. The point (-3,5) is on the terminal arm of angle θ in standard position. Find the angle in radians to one decimal place .

- 12. A wheel with a radius of 1.5m is rotating at a angular velocity of 5.5radians per second. What is the speed of the wheel in m/s?
- 13. When an object is moving in a circle, its angular velocity is the angle per unit time through which it rotates about the center. A car tire has diameter 64cm. Determine its angular velocity, in radians per second, when the car is travelling at 100km/h.
- 14. Write an expression for the angular velocity, in radians per second, for a car tire with diameter "d" centimeters when the car is travelling at "x" kilometers per hour.
- 15. The angle θ is in the first quadrant and $\cos\theta = \frac{1}{\sqrt{3}}$. Draw a diagram to show the angle in standard position and a point "P" on its terminal arm. Determine the possible coordinates for "P"
- 16. If $\sin\theta = -\frac{3}{\sqrt{11}}$, draw a diagram to show the angle(s) in standard position and a point "P" on its terminal arm. Determine the possible coordinates for "P" if it was on an unit circle.
- 17. If $\tan\theta=-\frac{3}{\sqrt{7}}$, angle θ is in standard position, and its terminal arm is in quadrant II. What is the exact value of $\cos\theta$?
- 18. Point P(3,-5) is on the terminal arm of an angle in standard position. What is the value of $\sin \theta \times \cos \theta$?

19. In the figure, if \overline{PO} is one unit long, find the exact coordinates of point "P".

20. What is the value of $\sin \theta \times \tan \theta$ if point P(1.957, -0.412) is on a circle with a radius of 2 units?

21. Evaluate:
$$\sin\left(\frac{\pi}{12}\right) - \cos\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{3}\right) - \cos\left(\frac{5\pi}{12}\right)$$

22. Find the exact value of $\sum_{k=1^{\circ}}^{360^{\circ}} \sin k$

23. If $\cos\theta = \frac{2a}{3}$, then what is the value of $\tan\theta$ in terms "a"?

24. If $\cos x = 0$ and $\cos (x + k) = 0.5$, what is the smallest possible positive value of "k"?

25. If $K\cos\theta=3$ and $K\sin\theta=2$, where K>0, find the value of "R"

- 26. If $A+B=180^{\circ}$, which of the following statements must be true?
 - I) $\sin A = \sin B$,
- ii) $\cos A = \cos B$
- iii) $\tan A = -\tan B$

27. If $\theta \le \theta \le 180^{\circ}$ and $\sin \theta \ge \cos \theta$, then what is the range of values for θ ?

- 28. Which of the following is equal to $\cos \left(270^{\circ} \theta\right)$? (No calculators)
 - I) $-\cos\theta$
- ii) $\cos \theta$ iii) $-\sin \theta$
- iv) $\sin \theta$

29. Determine the exact value of $\sin \theta$ in terms of "m" and "n" if $\cos \theta = \frac{m}{n}$, where θ is in quadrant 4.